一、棱柱
1 、棱柱的投影
如下图,是一六棱柱,它是由上下两正六边和六个矩形的侧面所围成。对各投影进行分析。
作投影图时,先画出中心线对称线,再画出六棱柱的水平投影正六边形,最后按投影规律作出其它投影。
正六棱柱的投影及表面上取点
2 .棱柱表面上取点
1 )棱柱表面都处于特殊位置,其表面上的点可利用平面的积聚性求得;
2 )求解时,注意水平投影和侧面投影的 Y 值要相等;
3 )点的可见性的判断,面可见,点则可见,反之不可见。
二、棱锥
1 .棱锥的投影
正三棱锥的投影
1 )分析三棱锥各平面的投影;
2 )作三棱锥的三面投影。
2 .棱锥表面上的点
棱锥表面上点的投影可在平面上作辅助线进行求解,如下图。
棱锥表面上取点
三、圆柱
1 .圆柱面的形成
有一母线绕与它平行的轴线旋转而成。
2 .圆柱体的投影对圆柱体的各个投影进行分析。
3 .圆柱表面上的点
在圆柱表面上有两点 M 和 N ,已知 M 的正面投影 m' , N 点的侧面投影( n” ),求作 M 和 N 的另外两个投影。如图所示。
圆柱表面上取点
圆柱表面上点的投影,在投影面为圆的投影中,其表面上点的投影都在该圆上。注意: Y 值要相等。
上一页
1
2
下一页